The Vector Equilibrium

25 10 2008

In this post are two animations of the geometry described by Buckminster Fuller.  Here’s the info from the first video:

This animation presents the geometry that is the basis of many of Fuller’s key ideas and concepts. At the beginning, twelve spheres are packed as closely as possible around a single central sphere. As the spheres shrink and disappear, they generate a polyhedron in which all edges and all radii are of equal length. This shape is what Fuller called a vector equilibrium. One of the characteristics of a vector equilibrium is its ability to contract by folding in on itself. The animation demonstrates how this simple geometric shape can be transformed to create several complex polyhedra. Next, it produces a different version of a vector equilibrium that Fuller called tensegrity—short for a stable structure of tensional integrity. In the last part of the animation, a map of the entire globe is transferred onto the vector equilibrium, which unfolds to produce a flat map of the earth made from six squares and eight triangles. Unlike conventional world maps, Fuller’s vector equilibrium map represents the world with minimal distortions to the relative size of the continents.

Digital animation by Michelle Chang with Helen Han and Temple Simpson.

This next clip is based on the metaphor of a clockface with the hours of 2 o’clock and 3 o’clock representing 60 and 90 degree angles, incorporating the polyhedra of Fuller’s synergetic geometry. (Metatron vector equilibrium starts at about 2 1/2 minutes.)





Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: